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ABSTRACT
Some end-to-end network services benefit greatly from net-
work support in terms of utility and scalability. However,
when such support is provided through service-specific mech-
anisms, the proliferation of one-off solutions tend to decrease
the robustness of the network over time. Programmable
routers, on the other hand, offer generic support for a va-
riety of end-to-end services, but face a different set of chal-
lenges with respect to performance, scalability, security, and
robustness. Ideally, router-based support for end-to-end ser-
vices should exhibit the kind of generality, simplicity, scala-
bility, and performance that made the Internet Protocol (IP)
so successful. In this paper we present a router-based build-
ing block called ephemeral state processing (ESP), which is
designed to have IP-like characteristics. ESP allows pack-
ets to create and manipulate small amounts of temporary
state at routers via short, predefined computations. We
discuss the issues involved in the design of such a service
and describe three broad classes of problems for which ESP
enables robust solutions. We also present performance mea-
surements from a network-processor-based implementation.
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1. INTRODUCTION
The best-effort datagram service of the Internet Protocol

has been a remarkably flexible and robust building block
for a wide variety of end-to-end services. However, as the
Internet matures, there is growing demand for additional
network-level mechanisms to support new services and to
improve the scalability and performance of existing ones.
Broadly speaking, two general approaches to deploying new
capabilities in the “waist of the hourglass” have been consid-
ered. The first is the common one: target a specific prob-
lem and develop a focused network-based solution to that
problem. This approach is exemplified by services such as
Express [9] and SSM [8] for scalable multicast routing, PGM
and others [5, 30] for scalable reliable data distribution, and
ECN [18] for early signaling of congestion without packet
loss. This approach has the advantage that the business
case and engineering tradeoffs are usually clear. Its disad-
vantage is that over time, the aggregation of one-off solu-
tions decreases the robustness of the network. Moreover,
building problem-specific solutions into the network may in-
terfere with future possibilities unforeseen at the time of
deployment.

At the other extreme is the approach exemplified by re-
search in active networks, which emphasizes generality [7,
13, 29]. The advantage of this approach is that deployment
of a sufficiently flexible platform allows all current and future
problems to be solved—at least in theory. The disadvantage
is that it is not at all clear whether or how a “sufficiently
flexible platform” with the desired level of security, perfor-
mance, and scalability can be engineered or deployed.

We propose to obtain the advantages of both approaches
by identifying a set of simple and generic router primitives
to support a broad range of new services, but not neces-
sarily every possible service. To that end, we present a
general-purpose network-level building-block service called
Ephemeral State Processing (ESP). ESP supports end-to-
end services by allowing packets to create limited amounts
of temporary state at routers and invoke simple predefined
computations on that state.

As a simple example of how such a service might be used,
consider the problem of determining if the paths from a
sender to two receivers share a set of common links. This
problem might arise, say, in determining where to place a
multicast reflector or gateway. If end systems can create



temporary network state and then query that state before
it disappears, the sender can send a “marker” message to
receiver A to mark that path, and then a “query” message
to receiver B that records the last marked node, thereby
identifying the common part of the path (see Figure 1).
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Figure 1: Finding common nodes along two paths.

Our contributions in this paper include the following. First,
we present the design of ESP and the engineering goals
and considerations behind it. Second, we describe three
broad classes of problems that can be solved using ESP,
and present example solutions, including an ESP-based re-
liable multicast service similar to PGM [5] and an aggre-
gation service similar to concast [3]. Third, we describe
a network-processor-based implementation, and a design for
an ephemeral state store that supports fast access to millions
of values per node using commodity memory with negligi-
ble management overhead. Fourth, we present encouraging
initial performance results for this implementation.

The remainder of the paper is organized as follows. The
next section presents design goals, architecture, and com-
ponents of ESP. Section 3 describes ways to use ESP, and
Section 4 addresses important issues that may arise in us-
ing it, including error handling and security. Section 5 and
Section 6 describe our implementation on the Intel IXP1200
network processor and present performance results that il-
lustrate the scalability of the service. Related work is dis-
cussed in Section 7, and Section 8 concludes the paper.

2. EPHEMERAL STATE PROCESSING
The remarkable success of the Internet Protocol can be

attributed, at least in part, to its simple, generic service ab-
straction. Our general goal in developing ESP has been to
reflect those characteristics that have made IP successful.
Before describing the ESP architecture itself, we first high-
light what we consider to be the key requirements for its
design.

2.1 Design Requirements
The starting point for our extension to the network layer

is that it enable packets to leave information at a router
for other packets to modify or pick up. Although this basic
capability is clearly not characteristic of IP, it makes possible
a number of interesting uses, and we believe it is essential
for a general building block. Yet user-controlled network
state is something to be approached with extreme caution:
the prospect of maintaining state for hundreds of thousands
of flows through a core router is rather daunting.

The key observation, however, is that the important quan-
tity when it comes to state is actually the space-time product

of storage: Little’s Law, from queueing theory, tells us that
if the average holding time of a storage resource goes down,
a system with a given fixed capacity can accommodate a
higher average arrival rate of customers. The conventional
approach to user-controlled state in the network is called
soft state. The general concept of soft state is that the re-
source is reclaimed (only) if it is not “refreshed” periodically.
With soft state, the holding time (and thus the space-time
product) of the resource is unbounded; this makes it nec-
essary to limit the ability of packets to create and refresh
state, which in turn introduces all sorts of requirements for
authentication, etc. To avoid these complications, we add a
second requirement: the space-time storage requirement per
flow (in fact, per packet) is bounded.

Users can send IP datagrams at any time, without prior
arrangement, and each packet is handled independently of
all others. Packets are transmitted anonymously, except for
addresses. One reason this is feasible is because the Inter-
net Protocol requires a bounded amount of processing per
packet. Moreover, the processing requirement is essentially
fixed, so that it can easily be implemented in hardware.
To ensure that ESP has these desirable characteristics, we
require that the amount of processing required per packet
at each node must be comparable to that of IP—in other
words, it must be “too cheap to meter.” And it must be
anonymous, in the sense that routers do not care which end
system is using the service, end systems do not care which
routers process their packets, and no central authority need
be consulted for permission to use the service.

Finally, for generality we want network-layer independence.
Also, ESP should fit comfortably within the architectural
context of modern routers and the Internet Protocol, and
not reinvent or modify existing network services. Thus ESP
relies on the network layer for forwarding only.

2.2 ESP Architecture
To achieve these goals, we designed a new network-level

building-block service based on ephemeral router state and
small bounded per-packet processing costs. The three main
components of the system are the ephemeral state store (or
ESS), in which packets can save and retrieve small amounts
of state, the instruction set, which defines the computations
that packets can invoke, and the protocol, which defines
the way ESP packets are processed as they are forwarded
through the network.

The basic idea is that each ESP packet specifies a single
instruction, which operates on information carried in the
packet and/or stored at a node. As packets traverse the
network, they create, modify, or retrieve small amounts of
state at each ESP-capable router along the path from the
source to the destination. This state information exists only
for a short time (say 10 seconds) and must be used by sub-
sequent packets within that interval. After processing at a
router, each ESP packet is either forwarded toward its des-
tination or silently discarded, according to the result of the
instruction execution.

The flexibility and generality of ESP stems from the abil-
ity to execute sequences of instructions in both space and
time: a single packet creates a sequence in space as it tra-
verses a path through the network, while an individual node
executes a sequence of packets in time.

The scalability of ESP derives from two factors. First,
ESP processing can be extensively parallelized: only pack-



ets that belong to the same end-to-end computation need
to share state and be processed serially. Second, per-packet
resource requirements can be precisely bounded. These fac-
tors make it possible to do most ESP processing in a local
interface context, i.e. on the port cards of the router (as
is typically done for IP forwarding). In other words, there
is no fundamental architectural reason for ESP packets to
be diverted far from the fast path for processing. Moreover,
port-card-based implementations only have to process pack-
ets at “wire speeds”—or even less, depending on the level of
parallelism. Finally, the ephemeral state store in each ESP
processing context (whether port-card-based or centralized)
can be implemented by multiple separate small stores rather
than one large monolithic store, provided that packets that
share information are always processed using the same store.

Note that centralized ESP processing is required for some
kinds of end-to-end services—namely, in situations where
the packets of a computation do not pass through a common
port at some router. Although our experience so far suggests
that port-based processing suffices for most applications, our
design nevertheless assumes that every ESP-capable node
has a centralized ESP facility in addition to a separate ESP-
processing facility on each port card. The packet protocol
(Section 2.5) allows each packet to specify the context(s) in
which it is to be processed at each node.

The remainder of this section considers the three ESP
components in greater detail.

2.3 The Ephemeral State Store
Much of the power and scalability of ESP arise from its

use of an associative memory called an ephemeral state store
(ESS) at each node. Like other associative stores, the ESS
allows data values to be associated with keys or tags for
subsequent retrieval and/or update. However, a key feature
of our approach is that the ESS supports only ephemeral
storage of (tag, value) pairs; each (tag, value) binding is
accessible for only a fixed interval of time after it is created.

The lifetime of a (tag, value) binding in the store is defined
by the parameter τ , which is required to be approximately
the same everywhere in the network. Once created, a bind-
ing remains in the store for τ seconds and then vanishes.
The value in the binding may be updated (overwritten and
read) any number of times during the lifetime. For scala-
bility, we want the value of τ to be as short as possible; for
robustness, it needs to be long enough for interesting end-
to-end computations to complete. For the purposes of this
paper, the lifetime is assumed to be about 10 seconds.

A fundamental principle of our service is that the life-
time cannot be extended. This difference between ephemeral
state and soft-state is subtle but important. With soft state,
the user controls when the resource is released. It follows
that the system cannot guarantee any particular rate of re-
source availability, and is therefore vulnerable to denial-of-
service attacks. With ephemeral state, on the other hand,
resources are reclaimed at the same rate they are allocated.
Reclaimed resources are equally available to all users. It fol-
lows that for any given maximum rate of binding creation
and value of τ , the size of store needed to guarantee that
every creation attempt succeeds is fixed, and can be deter-
mined in advance.

The ESS is modeled as a set of (tag, value) pairs where
each tag has at most one value bound to it. Both tags and
values are fixed-size bit strings. No structure is imposed

on either tags or values by the state store; their meaning
and structure is defined by the applications. Tag selection
is completely distributed—any user can use any tag.

Conceptually, the ESS is accessed via two methods:

put(tag, value): binds value to tag.

get(tag): returns the value bound to tag or nil (which
differs from every value) if tag has no value.

ESP instructions use these two simple methods to create,
read, and modify bindings in the ESS. Section 5.1 describes
how these operations can be implemented efficiently.

The utility of the ephemeral state store depends on users
choosing tags randomly, and having a large enough space of
tags to choose from that the probability of users choosing
the same tag (“colliding”) during any interval [t, t + τ ] is
small. In addition, it should be impractical for any user
to guess another’s tag by any brute-force method. If tags
are chosen truly randomly and the number of distinct tags is
sufficiently large, the effect is that each user sees a “private”
ephemeral state store. Indeed, tags can be thought of as
variable names that have global significance; thus users are
motivated to choose their names (i.e. tags) carefully.

Our current design uses 64-bit tags and 64-bit values. For
tags of this size, the probability that any given random tag
collides with one or more tags in a set of r (randomly-chosen)
tags is given by:

1 − (1 − 2−64)r

The probability that at least one collision occurs in a set of
r randomly-chosen tags is given by:

1 −
r−1�
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Figure 2: Probability of collision for varying num-
bers of users with 64-bit tags.

Figure 2 shows the relevant probabilities for group sizes
from 218 to 230. The top curve is the probability of some
collision occurring in the group. The bottom curve is the
probability that the particular tag chosen by a user will col-
lide with another tag in the group. Obviously these proba-
bilities are extremely low. If the total number of tags extant



COUNT(pkt p )

α = get(p.C)
if (α is nil)

α = 0
α = α + 1
put(p.C, α)
if (α ≤ p.thresh)
forward p

else discard p

COMPARE(pkt p )

α = get(p.V)
if (α is nil )

put(p.V, p.current)
forward p

else if (α <op> p.current)
put(p.V, p.current)
forward p

else discard p

Figure 3: Example ESP instructions

in the Internet during an interval of τ seconds reached one
billion, the probability of a collision involving tags anywhere
in the Internet would still be only 3%. In practice, collisions
only occur when different computations use the same tag at
the same state store —along the same path, for example.

To summarize: the short lifetime makes it possible to
place a strict bound on the space-time resources used by any
packet, thereby allowing routers to handle worst-case loads
and maintain line-speed processing. The use of randomly-
chosen tags to identify state makes it possible to completely
decentralize naming, and to create and use a binding in one
step.

2.4 ESP Instructions
Each ESP-capable node in the network supports a prede-

fined set of instructions that can be invoked by ESP pack-
ets (described in the next section) to operate on the ESS.
ESP instructions are analogous to the instruction set of a
general-purpose computer: each involves a small number of
operands and takes a fixed amount of time to complete. Be-
cause each ESP packet invokes a single ESP instruction, the
per-packet processing time is known and bounded. The key
differences with traditional machine instruction sets are that
(1) sequencing must be achieved by arranging for a sequence
of instruction-invoking packets to arrive at the router (i.e.,
no program counter), and (2) operations can only retrieve
values placed in the store within the last τ seconds. Nev-
ertheless, interesting computations can be constructed by
transmitting sequences of packets through the network.

Each ESP instruction takes zero or more operands, each
of which may be:

• a value stored in the local ephemeral state store (typ-
ically identified by a tag carried in the ESP packet);

• an “immediate” value carried directly in the packet;

• a well-known parameter value (e.g. the value of a MIB
variable).

ESP instructions affect only the local state where they are
executed; they either run to completion or abort (resulting
in an error indication). Each instruction executes atomically
with respect to the ephemeral state store; upon completion,
the initiating packet is either (silently) dropped or forwarded
toward its original destination.

We envision routers supporting a standard set of a per-
haps a few dozen ESP instructions. Here we describe two
instructions needed for examples in the next section; others
will be introduced as needed later in the paper.

The count instruction takes two operands: a tag C iden-
tifying a “counter” value stored in the ESS, and an imme-
diate value, thresh. As the name implies, the count in-
struction can be used to count packets passing through the

router. Once the count C reaches the value thresh, subse-
quent count packets will increment the counter but will not
be forwarded. This is useful, for example, when counting
the number of neighbors sending packets through a router.
count is also useful as a “setup” instruction for subsequent
instructions that collect information.

The compare instruction takes three operands: a tag V
identifying the value of interest in the ESS, an immediate
value current which is the user-supplied value carried by the
packet, and an immediate value <op> that specifies a com-
parison operator to apply (e.g., <, ≥, etc). The compare
instruction tests whether the relation specified by <op> holds
between the value carried in the packet and the value in the
ESS. If so, the value from the packet replaces the value in
the ESS and the packet is forwarded. The compare instruc-
tion is particularly useful in situations where only packets
containing the highest or lowest value seen by the node so
far should be allowed to continue on. Pseudocode for both
instructions is shown in Figure 3.

2.5 ESP Packets
The third component of the ESP service, which coordi-

nates and ties together the functionality provided by the
first two components, is the ephemeral state packet protocol.
As ESP packets travel through the network toward their des-
tination, they are recognized as such by ESP-capable routers
and processed hop by hop. (If necessary, ESP datagrams can
carry a Router Alert option [11] to indicate that they should
be examined by routers for special processing.) Non-ESP-
capable routers will simply forward ESP packets as usual.

Two forms of ESP packets are supported: dedicated and
piggybacked. A dedicated packet consists of an IP datagram
whose payload contains the identifier of the desired ESP
instruction along with its packet-borne operands. The IP
header of the datagram carries a protocol number indicating
the ESP protocol. A piggybacked ESP packet carries the
ESP instruction in an IP option (IPv4) or extension header
(IPv6). Piggybacked ESP packets initiate instructions as a
side effect of carrying the normal data through the network.
They offer the advantage of not adding to the bandwidth
requirements of the application; their disadvantage is that
the IPv4 option mechanism limits the size of the instructions
that can be carried.
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Figure 4: ESP packet formats

Each ESP instruction contains control information, an op-
code, and operands. The instruction format and the header
context for both types of packets are shown in Figure 4.
The 3-bit Loc field specifies whether execution occurs on
the input port card, the output port card, in the centralized
location, or any combination of these three locations (in-
cluding no processing at all). The Err field is set when an



error occurs while processing an ESP packet (e.g., failure to
create a binding because the ESS was full). Packets with Err
are forwarded on to the destination without further process-
ing, allowing the end systems to discover that the operation
failed. The RB is a “reflector” bit. ESP routers forward
packets with the reflector bit set without processing them;
when the packet reaches its destination, the ESP implemen-
tation swaps the source and destination IP addresses, unsets
the reflector bit, and sends the packet back to the original
source. We have found this capability useful for obtaining
information along the path from a network router to an end-
system. The Computation ID (CID) is a demultiplexing key:
different packets that need to access the same state must
have the same CID. ESP implementations are required to
ensure that instructions bearing the same CID are executed
in the same ESS context. (This enables the use of multiple,
parallel ESS’s on a single port card.) The Opcode identifies
the ESP instruction to be performed and the Operands field
carries the opcode-specific operands.

Note that the only parts of an ESP packet that are mod-
ified by processing en route are the instruction operands
and the control bits (Loc, Err, etc). In particular, the IP
header is not changed; thus packets cannot be diverted from
their original path. Although the ability to “redirect” ESP
packets as a result of processing (e.g. by modifying the des-
tination address based on state) would be useful in some
circumstances, it opens up opportunities for abuse, and also
violates our general separation of concerns. Instead, a redi-
rection service could be implemented as a separate, but com-
plementary, building block service [27]. The Internet Indi-
rection Infrastructure [25] may be a good match for this
purpose.

2.6 Application Programming Interface
Applications running on end systems access the ESP ser-

vice (i.e., initiate computations and collect results) via an
API that allows information to be placed in outgoing ESP
packets and extracted from incoming ESP packets. To send
or receive ESP packets, the application associates an ESP
communication endpoint (e.g., a socket) with a Computa-
tion ID, which identifies the computation in which the end-
point is participating. Thereafter the same CID is placed in
all outgoing ESP headers, and incoming ESP headers con-
taining CID are delivered to that socket. In addition to
the Computation ID, senders must specify the destination
to which the ESP packet should be sent. The destination
address can be bound to the endpoint or specified on a per-
packet basis.

To cause ESP instructions to be piggybacked on the pack-
ets of an existing flow, the application simply invokes an API
call (e.g., socket option) that arranges for the ESP option
to be added. The destination does not need to be specified
since it is already known.

The API may also provide general methods to construct
(and parse) ESP packets given opcodes and operands (tags
and values). In case an ESP error arises during transmission,
the API must also inform the application of the specific error
that occurred so that it can take corrective measures.

3. APPLICATIONS OF ESP
To illustrate the utility of ESP, in this section we show

how it can be used to solve three general types of problems,
each of which is difficult to solve using end-system-only ap-

proaches. Specifically, we consider the problems of control-
ling packet flow, simple computations on end system data,
and discovering topology information. Because of space lim-
itations our examples are confined to these classes, but we
do expect that ESP will prove useful to a wide range of end-
to-end services and applications. In the descriptions that
follow, loss-free operation is assumed; Section 4.3 discusses
error control.

3.1 Controlling Packet Flow
One of the simplest functions the network can perform

under application control is simply to not forward packets.
It turns out that this capability can be useful in a variety
of contexts. For example, the scalability of many multicast
applications—especially those requiring some form of feed-
back or reliable delivery—is limited by the twin problems of
implosion and wasted bandwidth (arising from feedback to
the source and data retransmitted to group members that
don’t need it). A number of techniques, both network- and
end-system-based, have been proposed to regulate packet
flow in an attempt to avoid these problems and scale to
larger group sizes. Examples include hierarchical aggrega-
tion [16], feedback rate control in RTCP [20], randomized
delays for multicast NACK suppression [6], and repair sub-
casting in reliable multicast protocols [5, 14].

The basic idea common to all of these is elimination of un-
necessary packets as they pass key locations in the network.
This can be accomplished in ESP as follows:

1. Create ephemeral state at router interfaces where packet-
pass/drop decisions will be made.

2. Send packets carrying an ESP instruction that makes
the pass/drop decision based on the ephemeral state
(or absence thereof), and possibly updates the state in
the process.

The following sections present two specific examples of the
use of this approach to solve real-world problems: feedback
thinning and PGM-like NACK suppression and subcasting.

3.1.1 Multicast Feedback Thinning
Group applications often require feedback to be sent from

group members to a common destination such as a multicast
source. For example, the RTP/RTCP protocol [20] defines
feedback messages (“receiver reports”) that carry informa-
tion such as the number of packets lost. The source then
uses the information to adjust its transmission rate, encod-
ing scheme, etc. The challenge, as the group size grows, is
to avoid implosion while maintaining the timely nature of
the feedback.

Let the feedback information of interest be represented by
the generic parameter u. In many cases (including RTCP)
the source is only interested in the extreme values of the
feedback—e.g. the maximum value of u transmitted by any
group member. Using ESP, the danger of implosion can be
substantially reduced by recording the maximal (in whatever
ordering is relevant) value forwarded at any point, and only
passing packets carrying values that exceed that maximum.
Thus, packets are discarded as soon as it is determined that
they are not “interesting” to the destination.

Assume, for example, that we are interested in the max-
imum value of u at any group member. Periodically group
members transmit an ESP compare instruction to the source.
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Figure 5: NACK suppression and subcasting using ESP.

Each member includes its value of u as the immediate value
to the compare instruction, uses “<” as the compare op-
eration, and tu as the ESS tag (where the tag name tu is
discovered via some out-of-band mechanism). As packets
travel toward their destination, the compare instruction
updates the maximum value seen at each node. Packets
whose values are not larger than the current maximum are
discarded. The result is that the destination application re-
ceives a “thinned” sequence of packets, each containing a
larger value of u than the previous one. Assuming values
arrive at nodes in random order, the result is that the to-
tal number of packets arriving at the source is, on average,
exponentially smaller than without this filtering capability.

3.1.2 Enhancing Reliable Multicast
As a more elaborate example of controlling packet flow

with ESP, consider a reliable multicast enhancement ser-
vice with functionality similar to that provided by PGM, a
router-based protocol designed specifically to support reli-
able multicast [5].

Like PGM, the ESP-based service is based on negative
acknowledgements and subcast retransmissions. Multicast
receivers send a negative acknowledgement (NACK) to the
source, or a designated proxy, whenever they detect a loss;
the NACK contains the identifier of the lost packet. Implo-
sion is avoided by discarding duplicate NACKs inside the
network. Upon receiving a NACK, the multicast source or
proxy re-multicasts the lost packet. To avoid wasting band-
width delivering retransmissions to all nodes, a form of sub-
cast is implemented by forwarding the retransmission only
to the portion of the multicast tree through which NACKs
were forwarded.

To implement this service, NACK packets carry an ESP
instruction that marks both incoming and outgoing inter-
faces of each node visited. The mark on the output (up-
stream) side is used to suppress subsequent NACKs for the
same data packet. This is implemented with a count in-
struction with threshold of one (or higher for fault tolerance;
see Section 4.3). The mark on the input side is necessary for
subcasting. Retransmissions carry a piggybacked ESP in-
struction, processed on the output (downstream) side, that
allows the packet to pass only if the interface was marked
by a NACK for that sequence number. Figure 5 illustrates
the operation in a single router with four interfaces. In (a),
the multicast source S transmits to three receivers, but the

packet is lost before reaching R0 and R1. In (b), R0 and
R1 send a NACK with an ESP instruction piggybacked; the
instruction deposits a small amount of state (with a tag de-
termined by the sequence number of the missing data) in the
input interface. It also checks for the presence of a similar bit
of state on the output interface, and the packet is forwarded
only if the state is not present or the threshold has not been
exceeded. (The figure shows operation with a threshold of
one.) In (c), the source retransmits the requested data, with
a piggybacked ESP instruction that checks for the existence
of state at the output interface, and the packet is forwarded
through the interfaces toward R0 and R1.

This solution works well provided the path followed by
NACK packets is the reverse of the path followed by data
(and retransmission) packets. However, if the paths are not
symmetric, an alternative method is needed to relay NACK
packets back up the forward data path. The same situa-
tion arises whenever protocols require that network state be
accessed on both the forward and backward path, for exam-
ple in RSVP and PGM. Various solutions for this problem
exist, including a protocol designed specifically for this pur-
pose [22].

3.2 Simple Computations on User Data
Distributed applications commonly have need to distill or

aggregate data supplied by the participants. Perhaps the
simplest example is counting the number of receivers in a
multicast group; others include tallying votes, computing
the average load, and calculating the amount of work re-
maining in a system. This kind of aggregation is typically
accomplished by applying an associative and commutative
operator to values supplied by group members. However, if
the group is large, it is impractical for a single node to col-
lect all the input and perform the computation; if the group
members are anonymous, it is difficult to impose a structure
that would allow the result to be computed by the group in
a distributed fashion.

Both of these problems can be solved via tree-structured
ESP computations. The basic idea is for a particular node to
be designated as the collector or destination; the paths from
group members to the destination node form a tree. Each
member sends its value to the destination in an ESP packet;
each interior node of the tree collects values from its chil-
dren, performs the computation, and forwards the result to
its parent. Eventually the destination receives the (single)



COLLECT(pkt p )

α = get(p.V)
if (α is nil)

α = p.val
else

α = α ◦ p.val
put(p.V, α)
β = get(p.C)
if (β is nil ) abort
β = β - 1; put(p.C, β)
if (β == 0)

p.val = α
forward p

else discard p

Figure 6: Instruction for aggregation computation

result. Risk of implosion is reduced because each interior
node sees packets only from its immediate children in the
tree. Associativity and commutativity of the operation en-
able collection and computation to be interleaved—that is,
packet values can be combined with the computation state
one at a time as they arrive.

In general, these tree-structured “aggregation” computa-
tions are carried out in two phases. In the first phase, each
non-leaf node learns of its children in the tree. In the second
phase, group members send their values up the tree (toward
the destination). Each node computes and forwards its re-
sult only after having heard from each of its children. The
first phase can be accomplished with the count instruction
described in Section 2.4. The second phase can be accom-
plished with a simple collect instruction, which takes four
operands: A tag V, identifying the result of the computa-
tion so far in the ESS; an immediate value val, which carries
the value to be contributed by this packet; a tag C, identify-
ing the child-counter established by the count instruction
in the first phase; and an immediate value ◦, which speci-
fies the associative and commutative operator to be applied.
collect applies the user-specified operation ◦ (e.g., addi-
tion or subtraction) to the value in the packet and the value
stored at the node. It then decrements the “child count”
(C ). When C reaches 0, all children have reported and the
result is forwarded to the next hop.

Note that the two phases of the computation share ephem-
eral state, so both must be completed at each node within
one ephemeral state lifetime. (See also Section 4.2.)

3.3 Discovering Topology Information
Recently researchers have proposed various end-to-end ser-

vices based on the ability to invoke special (predefined) func-
tionality at particular locations inside the network. By en-
abling special functions at precisely the right nodes, end
systems can control the way their packets are processed en
route. Examples of such functions include packet duplica-
tion for multicast [26, 28], marking or logging for traceback
of denial-of-service attacks [19, 24], ingress filtering [15], and
packet redirection for overlays [10, 25]. Although ESP is not
designed to provide such “heavyweight” functions itself, it
can be used to solve the problem of determining where in
the network such functions should be invoked.

The basic approach, again, is to first send packet(s) that
set up state to distinguish the desired node from others, and
then send packet(s) to recognize and collect the address(es)
of the distinguished node(s). The example given in Section 1
and shown in Figure 1 illustrates this.

In earlier work, we showed how ESP can be used in com-
bination with the ability to invoke special processing at
specific routers, to enable new types of services. We pro-
posed the use of dynamically-invoked duplication modules
at routers to implement multicast using unicast forward-
ing [27]. ESP is ideally suited for discovering a good (ef-
ficient) location to invoke a duplication module. In other
work, we have shown how to use ESP to identify bottleneck
links in multicast trees [28], and (in the context of layered
multicast) use that information to install thinning modules
for congestion control.

4. PRACTICAL CONSIDERATIONS
In this section we address various questions of a pragmatic

nature that may arise when designing, deploying and using
ephemeral state services.

4.1 Partial Deployment
One cannot assume that every router in the network will

simultaneously begin supporting any new capability. There-
fore services based on ESP need to operate correctly when
only a subset of routers are ESP-capable. Because non-ESP-
capable routers simply forward ESP packets, all of the algo-
rithms described in this paper operate correctly with partial
ESP deployment, albeit with reduced performance and scal-
ability in some cases. For example, the path-intersection
computation described in Section 1 returns the last ESP-
capable node common to both paths.

In general, the performance and scalability of ESP services
improves as the fraction of nodes supporting ESP grows.
For some applications, such as the aggregation application
described in Section 3.2, we have found that most of the
benefit can be obtained even if the functionality is deployed
only at the edges of domains [3].

4.2 Timing
Distributed computations using ephemeral state require

some level of coordination to ensure packets arrive at all
nodes within an interval of duration τ . The simplest method
is to have a controlling node transmit a stimulus message
to participating hosts, which then respond by sending the
appropriate ESP packet. This stimulus message may need
to be reliably transmitted.
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Figure 7: Erroneous aggregation computation: “a”
packets establish child counts, “b” packets collect
values.

When stimulus-based coordination is inadequate (e.g., re-
liably disseminating the stimulus introduces too much jitter)



some other coordination method is required. If the partic-
ipating hosts have a common time source the controlling
node can instead transmit the start time of the computa-
tion to the participants. The start time simply needs to
reliably reach the participants in advance of the indicated
time. Note that the accuracy required of the common time
base is modest—as long as the participants’ clocks are within
the (assumed) maximum end-to-end network delay of each
other, the computation will be coordinated to the same de-
gree as with stimulus messages.

A related issue is the timing between phases of a multi-
phase computation. The inter-phase delay must be adequate
to ensure that all packets of one phase are processed at each
node before any packets of the next phase—otherwise errors
can result. Figure 7 illustrates this for the aggregation com-
putation: Leaf nodes 1 and 4 start each phase (labeled a and
b) of the computation at the same time. However, because
the b phase starts at Node 1 before all a packets have made
it to Node 0, Node 0 prematurely delivers the result.

Given an upper bound δ on the one-way transit delay
through the network, an inter-phase delay of 2δ suffices to
ensure that this kind of error does not occur.

4.3 Dealing With Errors
ESP is a best-effort service; like other IP datagrams, pack-

ets carrying ESP instructions are subject to various misfor-
tunes including loss, reordering, and duplication. The effect
of such errors on end-to-end computations depends on the
particular computation. The choice of how best to deal with
such errors is ultimately up to the application itself. Our in-
tent here is to consider the effects and highlight some princi-
ples for designing computations to be robust against errors.
We focus here on losses because ESP-based computations
tend to be robust against reordering, and also because the
solution for losses protects against duplicates as well.

When an ESP packet is lost, the effect on the computation
is one of the following:

• No effect: the computation proceeds correctly to com-
pletion in spite of the error (e.g., losing a packet that
would have been discarded anyway, like a compare
packet that does not contain the extreme value).

• Silent failure: nothing is delivered to the application(s)
in the end systems. This result can be detected in the
usual way, through a timeout.

• Explicit failure: an instruction aborts at an interme-
diate node due to the absence of expected ephemeral
state (because the state was never established or timed
out). In this case the packet that invoked the aborted
computation is forwarded with the Err bit set and the
Loc bits cleared.

• Incorrect result: an incomplete or incorrect value is
delivered to the application as if it were correct.

Of course, the likelihood of each type of outcome depends on
the specific details of the instance. For some computations,
an incorrect outcome is unlikely in all cases, while for others,
the probability grows with the size of the computation.

Consider the feedback thinning service of Section 3.1.1,
for example. Packet loss may affect the number and se-
quence of values delivered to the destination, but it does
not affect the ultimate result unless all packets containing

the maximal value are lost. Thus if multiple repetitions of
the computation produce the same result it is very likely to
be correct.

On the other hand, the two-phase aggregation service de-
scribed in Section 3.2 will fail silently or produce an incor-
rect result if even one message is lost. For small groups it
may be possible to obtain a correct result by simply repeat-
ing the computation, but as the number of nodes involved
grows, the likelihood of error-free completion drops quickly.
We simulated the aggregation computation for a group size
of 5000, with 4 randomly-chosen lossy links, each having a
loss probability of 10%. Out of 1000 runs, 690 completed
successfully (i.e. a result was delivered to the receiving ap-
plication); of those, only 454 returned the correct answer of
5000. Clearly it is necessary to “build-in” robustness when
designing such services.

Our paradigm for making distributed computations ro-
bust against loss is based on proactive retransmission. In
the rest of this subsection we outline the principles of the
approach and apply it to the aggregation computation of
Section 3.2 as an example.

4.3.1 Adding Redundancy
Lost ESP packets, like lost TCP packets, are recovered

by host retransmission regardless of where in the network
they are lost. However, the situation is somewhat more
complicated with ESP. One reason is that each ESP packet
is (in general) intended to modify the state of all ESP nodes
along its path, but a lost packet only affects nodes up to the
point where it is dropped. Thus the retransmitted packet
should modify only the state of those nodes after the point
where the original packet was dropped. On the other hand,
the packet itself may be modified as it travels through the
network; the retransmitted packet should match the original
when it arrives at the loss point.

These observations imply that each ESP node must be
able to distinguish between original packets and retransmit-
ted duplicates. Moreover, any packet recognized as a dupli-
cate should not update the computation state at the node,
while the packet itself should be updated in the same way
as the original packet. Also, duplicates must be forwarded
(if forwarding is consistent with the computation state) to
ensure that redundancy propagates through the network.

If all duplicate packets are forwarded in a tree-structured
computation, the redundancy is amplified and implosion
may result. Therefore filtering is needed to ensure that re-
dundancy remains at a constant level as packets move up
in the tree. We therefore must keep track of, and limit, the
number of packets forwarded at each hop, thereby keeping
the amount of redundancy constant across the tree.

The foregoing discussion leads to the following general
form for instructions in a multiphase, tree-structured com-
putation:

Basic Redundant Instruction Form
if the packet is not a duplicate

record the packet;
execute the operation;
update the computation state and packet;

else
(possibly) update the packet;

increment fwd-count;
if the packet is forwardable and fwd-count ≤ pkt.limit

forward the packet
else discard the packet



Note that it is not necessary for all hosts to originate the
same number of packets. The computation may specify an
expected number of transmissions per host, and each host
can transmit transmit with the appropriate probability to
achieve that average.

4.3.2 Duplicate Detection
In general the number and identity of nodes originating

packets in a computation is not known a priori, so we need a
means of distinguishing retransmitted packets from original
packets without this information. We use Bloom filters to
solve this problem using a fixed, modest amount of space.

A Bloom filter [1] is a way to record sets of elements us-
ing a bitmap of size m = 2q , and k random hash functions
h0, . . . , hk−1. Each element that might be recorded in the
Bloom filter has a unique identifier; the hash functions map
identifiers to q-bit offsets. An element is recorded in the
bitmap by hashing its identifier with each of the k hash
functions, and setting the bits at each of the resulting off-
sets. To test for the presence of the element with identifier
i in the set, one checks whether each of the bits at offsets
h0(i), . . . , hk−1(i) is set in the bitmap. If so, the element is
considered to be present; otherwise it is not present.

Bloom filters introduce a tradeoff between the size of the
bitmap and the probability of a false positive: After a num-
ber of elements have been recorded in the bitmap, a new
element may be erroneously judged to be present, because
all of its bits were set by earlier elements. Given a set of
k hash functions h0, . . . hk−1, we say a set I of identifiers is
collision-free if, for each i ∈ I ,

{h0(i), . . . , hk−1(i)} �⊆
�

j∈I,j �=i

{h0(j), . . . , hk−1(j)}

Figure 8 shows the probability, according to this definition,1

that a randomly-chosen set of identifiers is collision-free.
The horizontal axis represents the number of distinct ele-
ments being recorded; the curves show the results (obtained
by simulation) for various combinations of m and k.

Detection of duplicate packets is implemented by storing
the Bloom filter bitmap in the ESS. For simplicity, the fol-
lowing discussion assumes that the Bloom filter bitmap is
the size of a single ESS value2 At the beginning of a com-
putation, each node randomly chooses k offsets from 0 to
m−1, and sets the corresponding bits in a bitmap (IDmap)
the same size as the Bloom filter. Each packet (i.e. instruc-
tion) forwarded by that node in that computation carries a
tag identifying the Bloom filter, plus this IDmap. To check
whether a packet is a duplicate, the receiving node checks
whether all the bits set in the IDmap are already set in the
stored Bloom filter. If so, the packet is considered a du-
plicate; otherwise it is considered new, and the IDmap is
OR’ed into the Bloom filter bitmap. This method has the
advantage of allowing the instruction to be oblivious to the
value of k.

1This condition is strong, in the sense that it guarantees
no false positive will occur regardless of the order in which
elements are added. For some sets that do not satisfy this
condition, whether a false positive occurs depends on the
order in which the elements are added.
2It can easily be generalized to larger bitmap sizes by letting
a single tag denote a sequence of tags.
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4.3.3 Robust Aggregation
To summarize this section, we present two instructions

that together implement a robust version of the computa-
tion of Section 3.2. The main change is the addition of
Bloom filters to each instruction to detect duplicates, and
forwarding filters to suppress extra redundancy (note that
count already included such a filter). Also, since the Bloom
filter has to be present anyway, we use it to keep track of
children instead of a counter.

RCHLD(pkt p )

α = get(p.T0)
if (α is nil ) α = 0
α = α | p.idmap
put(p.T0, α)
β = get(p.C)
if (β is nil ) β = 0
β = β + 1
put(p.C,β)
if (β ≤ p.thresh)

p.idmap = myIDmap
forward p

else discard p

RCOLLECT(pkt p )

α = get(p.T1)
if (α is nil ) α= 0
if ((α & p.idmap) != p.idmap)

α = α | p.idmap; put(p.T1,α)
ξ = get(p.V )
if (ξ is nil) ξ = p.val;
else ξ = ξ ◦ p.val
put(p.V,ξ)

β = get(p.T0)
if (β is nil ) abort
if (α == β)

ν = get(p.D )
if (ν is nil) ν = 0
ν = ν + 1; put(p.D,ν)
if (ν ≤ p.thresh)
p.idmap = myIDmap
p.val = ξ
forward p

else discard p

Figure 9: Instructions for robust aggregation

The two instructions are shown in Figure 9. The first,
rchld, replaces the count instruction (introduced in Sec-
tion 2.4) and records the identifers in packets received from
its children. The instruction takes the following operands:
a tag (T0) identifying the Bloom filter bitmap, the idmap
of the sender, a tag C identifying the count of forwarded
packets, and an immediate threshold thresh.

The second instruction, rcollect, is similar to collect,
but also checks for duplicate packets. In addition to the
operands V, val, and “◦” that are used in collect (Sec-
tion 3.2), it also takes the following operands: a tag T1

identifying the Bloom filter bitmap for detecting duplicates;
an immediate idmap, identifying the last node to forward
the packet (the same idmap used in the rchld instruction),



which is used to update value bound to T1; the tag (T0) iden-
tifying the Bloom filter used in the previous rchld instruc-
tion; a tag D identifying the count of packets forwarded;
and an immediate threshold thresh to control the number of
duplicated transmissions. The key difference between rcol-
lect and collect is that in rcollect the condition for
forwarding is when the two Bloom filters match, rather than
when the count is zero.

In a tree-structured computation, the size of the bitmap
required and the number of hash functions should be chosen
based on the tree node with the maximum degree, so the
probability of messages falsely being rejected as duplicates
is sufficiently low. The curves in Figure 8 give an idea of the
size of bitmap required to achieve this for different numbers
packets to be recorded.

We simulated the robust aggregation computation on the
same tree used for the simulation of the unreliable compu-
tation: 5000 leaves, four randomly-chosen lossy links with
loss probabilities of 10%. Using a Bloom filter size of 512
bits (the tree has a maximum branching factor of 40) k = 11
hashes, and a forwarding limit of two, 926 of 1000 runs com-
pleted successfuly, and of those, 874 obtained the correct re-
sult. With a forwarding limit of three—that is, leaves send
three copies of each packet, and each packet is forwarded up
to three times—all but three runs completed successfully,
and 945 runs obtained the correct result.

4.4 Security Considerations
Many of the threats relevant to ESP are common to other

network-level services, including IP itself. As with other
services, the most effective approach is often to handle secu-
rity in the application, where it is possible to apply existing
end-to-end mechanisms. For example, group feedback val-
ues filtered through the network (Section 3.1) can be con-
firmed at the application layer using group security proto-
cols. However, the special role of routers in providing ESP
services, coupled with the need to keep routers and end sys-
tems (mostly) oblivious to each others’ identities, makes it
harder to apply some traditional end-to-end security solu-
tions. Our goal here is not to describe a complete security
design for ESP, but rather to show that options exist for
applications concerned about security.

We consider three kinds of threats: ESP as a threat to
other network applications that do not use it; ESP as a
threat to routers that implement it; and threats to applica-
tions using ESP.

4.4.1 Attacks using ESP
Because ESP neither duplicates nor spontaneously gener-

ates packets—the number of ESP packets leaving any router
is at most the number entering—it does not offer any op-
portunities for new flooding attacks. Only packets carrying
ESP headers are processed by ESP; thus ESP is no threat
to applications that do not use it. An attacker could cause a
non-ESP application’s packets to be processed somewhere in
the network by inserting a piggybacked ESP header. How-
ever, given the ability to modify packets in transit, this is
just one of many ways to cause mischief, and ways to protect
(or at least detect) such modifications are well-known.

4.4.2 Threats to ESP-Capable Routers
ESP gives routers additional work to do. It is therefore

prudent to ask whether that additional workload poses any

significant threat to router functionality. For example, could
an attacker incapacitate a router by flooding it with ESP
packets? Because it is designed to be implemented on line
cards and to run at wire speeds, ESP is no worse in this
sense than plain old IP processing.

The centralized ESP context (Section 2.2) in a router can
potentially be attacked by flooding it with ESP packets.
However, this is no different than any other application-level
protocol running in a router over UDP or TCP. Moreover,
a denial-of-service flooding attack on one of a router’s ESP
contexts does not affect the others, nor does it affect the
router’s ability to forward datagrams, except to the extent
that the ESP flood consumes bandwidth—which, again, is
no different from a “traditional” IP denial-of-service attack.
We conclude that the presence of ESP in a router does not
introduce any vulnerabilities that are not already present.

4.4.3 Threats Against Users of ESP
The operands of ESP instructions are carried in the clear

in each packet. Anyone who can eavesdrop on packets in the
network can discover the tags and values occurring in oth-
ers’ computations. If the computation involves sensitive end
system information, that information can be compromised.
Moreover, given the tags and CID used in an end-to-end
computation, an attacker can send packets containing bo-
gus information to cause the computation to be aborted, or
to deliver an incorrect result that looks like a correct one.

Clearly this threat can be ameliorated by making eaves-
dropping and spoofing difficult. For example, groups that
want to use ESP securely can set up a virtual private net-
work using IPsec (including the other ESP [12]) to ensure
that packets are not snooped or forged. This raises the cost
of using ESP significantly, but does have the side benefit
of providing a way to ensure that paths are routed through
ESP-capable routers.

More dynamic cryptography-based approaches may exist.
In any case the computational costs of cryptography, cou-
pled with the potentially high administrative costs of estab-
lishing and maintaining trust relationships between hosts
and infrastructure, give rise to tradeoffs that must be consid-
ered very carefully in the context of an extremely lightweight
service like ESP. We consider this an important area for fu-
ture work.

4.5 Route Stability
The ability to leave state at network nodes is only use-

ful if later packets can reliably “find” that state. Some
computations using ESP (including most of the examples
in Section 3) rely on the fact that successive packets sent to
the same destination will follow the same path through the
network. We expect that most computations will complete
within an interval comparable to the state lifetime. It seems
reasonable to expect routes to remain stable over that time.
However, load sharing and route flaps may cause problems
for some ESP computations—as they do for other services,
including TCP [17].

5. IMPLEMENTATION
As a proof-of-concept, we implemented the ESP service

on the Intel IXP1200 network processor3. We used the

3We are also developing a hardware implementation on the
Virtex 1000 Field-Programmable Gate Array (FPGA).



Bridalveil evaluation board which contains a core Strong-
ARM processor running at 232 MHz that connects to up
to 8 MB of SRAM and 256 MB of SDRAM. The IXP1200
board supports four 100 Mbps Ethernet ports that can be
accessed by the processor through a 104 MHz bus. The Intel
IXP1200 network processor is designed to support on-board
(fast) packet processing via user-loaded software processing
modules. The innovation of the the IXP1200 is the six on-
chip microengines (µengine) each supporting four hardware
threads for parallel processing. Each of the µengines is sep-
arately programmable and is supported by a set of hardware
instructions specifically designed for packet processing.

Our goal was to utilize the processing power of current
network processors to perform at or near wire speeds of 100
Mbps. We focused on the implementation and performance
of the ESS, because the high-latency memory accesses to the
ESS are the dominant cost of an ESP instruction. In this
section we describe the design of the ESS; the next section
presents performance results obtained from the IXP1200.

5.1 A Scalable ESS Design
If ESP is to be practical, it is crucial that ephemeral state

be scalable and inexpensive to implement. Although con-
ventional content addressable memories (CAMs) offer excep-
tional performance, they do not scale well, being typically
relatively small and expensive.

To address this problem, we developed an ESS architec-
ture based on inexpensive commodity memory. Commodity
memory is cost effective and offers much larger storage ca-
pacity than CAMs. The challenge is minimizing the time
required to locate and access (tag,value) pairs in the RAM.
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Figure 10: Memory layout of ESS.

Our design for a 2n-entry store partitions the memory into
the three tables shown in Figure 10. The tables may be lo-
cated in different types of RAM for performance or storage
capacity reasons [23] (e.g., fast SRAM vs. large DRAM).
The value table—64 bits per entry—stores values associated
with tags. The remaining two (control) tables, the hash ta-
ble and tag table, together implement the associative lookup
service.

Hashing is used to reduce the number of memory refer-
ences needed to locate a tag. Hash collisions are handled
via explicit chaining. Pointers into the tag table, rather
than the tags themselves, are stored in the hash table to

create a level of indirection that allows tags to be stored se-
quentially in the order they were created, which is also the
order they will timeout or expire. The next register points
to the next available entry, while the last register points to
the next entry to expire. At any time, the entries from last
to next (modulo 2n) are “live” and ordered from oldest to
youngest. This simplifies the process of removing expired
entries and encourages parallelism.

Each tag in the ESS has an entry in the tag table; the as-
sociated value is stored at the same index of the value table.
Each tag table entry also contains the expiry time of the en-
try (a z bit value), and a chain pointer (i.e., an n-bit index
of another entry in the tag table). The number of entries in
the hash table can be anything, but for efficiency should be
at least the size of the tag table. The tag table is the same
size as the value table; thus if the value table capacity is 2n,
each hash table entry is n bits wide. A clock register with a
resolution of z bits is incremented periodically and is used
to calculate the expiry time.

Entries are actively removed by a cleaner function, which
waits for the clock to equal the expiry field pointed to by
last. Aggressive removal of timed-out entries reduces the
number of bits that have to be stored in the expiry field;
lazy removal requires substantially more bits to ensure that
the clock doesn’t wrap.

The interface to the ESS supports four operations:

handle find(tag): return a handle to the record bound to
tag. If the tag does not exist, return a NULL handle.

handle find create(tag): this atomic operation checks for
the existence of tag and creates it if it does not exist.
It then returns a handle for the record.

status write(handle,value): bind value to the tag associ-
ated with handle. Return success or failure.

value read(handle): return the value bound to the tag as-
sociated with handle.

The ESS tables and interface are designed such that a tag
need be looked-up only once per ESP instruction. Both
find and find create map a 64-bit tag to an n-bit handle
(i.e., an index into the value table) that can be used for
subsequent reads and writes to the tag’s value.

5.2 Design Characteristics
Our ESS design has several desirable characteristics. First,

it is relatively cheap in terms of space (memory) overhead.
At least 128 bits are required per (tag,value) pair; the ad-
ditional overhead, assuming z-bit timestamps and a hash
table to tag table size ratio of h, is (h + 1)n + z bits per
entry for a 2n store. Section 6 considers the effect of various
h settings.

Second, the design is efficient in time overhead. Given a
reasonable hash function and a sufficiently large hash table,
only two memory accesses are needed to locate a tag, re-
gardless of how full the tag table is. Moreover, the lookup
occurs at most once per instruction. Tag values can then be
read or written in a single memory access.

Third, our design requires only a single low resolution
clock. Time values can be stored in a small number of bits.
For example, assuming 10-second lifetime and a 0.1-second
resolution clock, 10-bit time values should more than suffice.



Fourth, the design encourages parallel and pipelined ac-
cess to the ESS. The find create operation must coordi-
nate with the cleaner when a new entry is allocated, but
otherwise they can run independently. Note that the expi-
ration of a tag (and removal by the cleaner) has no effect
on instructions that might be accessing the corresponding
location in the value table. It is also possible for multiple
threads to access the store in parallel. As long as differ-
ent threads do not access the same tag, there is no need
for coordinated access to the data store. If we assume that
different computations never use the same tags, the only
source of interference is different instructions belonging to
the same computation being executed simultaneously. We
can prevent this from happening by serializing the execution
of packets belonging to the same computation. The Compu-
tation ID carried in the ESP packet (Section 2.5) provides
the means of achieving this.

6. PERFORMANCE
We implemented ESP processing using a combination of

the StrongARM and the µengine processors. To evaluate the
per packet processing costs of ESP, we used the MAC-level
packet reception and transmission code from the IXP1200
SDK2.0 development system; this code is known to be able
to process packets beyond linespeed. We inserted new µengine
instructions to detect ESP packets the dispatch them to the
core processor for further processing. We used the 64-bit
hardware hash instruction to hash the tags carried in the
packet. We measured the performance of the system by gen-
erating ESP packets and sending them over the 100 Mbps
link to the IXP1200.

Our code used the algorithms described earlier for find-
ing, reading, and writing (tag,value) pairs in the ESS. Hash
collision were handled through chaining, while new bindings
used the next pointer and the cleaner used the last pointer.
A separate thread was scheduled to periodically (e.g. every
tenth of a lifetime) check whether the entry pointed to by the
last pointer had expired. To measure performance when the
hash table becomes full, we artificially loaded the table and
then measured its performance. As expected, the latency of
the find() operation depends on the chain size in the hash
table (Table 1). Table 1 shows the cost of the ESS func-
tions for the SRAM implementation when the hash table
is essentially empty (i.e., chain lengths of 1). Since the ac-
tual access time depends on the length of the chain, we also
show the number of memory accesses required as a function
of the chain length cl. The find create() only takes five
more 32-bit access than find() because the hash table and
the tag/data table must both be modified. The simplicity of
ESP instructions means that the majority of the processing
costs are attributed to ESS performance. As shown here,
our initial numbers indicate that the ESS is capable of op-
erating near or at linespeeds.

We also measured performance using different size hash
tables. In particular, we tried h ratios ranging from 0.5 to
2 (h = hash table size/tag table size). Fig. 11 shows the
effect that different hash table and tag table sizes have on
the find() performance. Our results show that even when
the store is full, the average access time remains constant if
the hash table has twice as many entries as the data table.
Even when the hash table is only half the size of the data
table, the average access time still remains below 3 µsec per
packet.

ESS calls Time Number of 32-bit
using SRAM Memory Accesses

find() 0.5 µsec 5 × cl
find create() 1.4 µsec 5 + 5 × cl
read() 0.1 µsec 2
write() 0.1 µsec 2

Table 1: Access times for ESS operations. cl=Chain
Length
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Figure 11: The average find() function latency when
fraction of the ESS is filled

The IXP1200 provides different access capability to SRAM
and SDRAM memory. The SRAM has a 32-bit wide bus and
runs at the core clock frequency (232MHz). The SDRAM
has a 64-bit wide bus and operates at half of the SRAM fre-
quency (116MHz). The SRAM’s fast access is intended for
crucial router state such as the routing table. The SDRAM’s
wider bus is designed for packet I/O and buffering. Al-
though smaller in size, the IXP1200’s SRAM offers the per-
formance we desired for ESS storage and with up to 8 MB
of space was sufficiently large to support a reasonable-sized
prototype ESS. However, for comparison we measured the
performance of our ESS design using the SRAM and then
the SDRAM.

Avg. Latency (µsec)
Functions SRAM SDRAM SRAM & SDRAM

compare 3.98 6.49 4.99
count 2.62 3.54 3.47

Table 2: Latency of various ESS operations with
ESS located in SRAM, SDRAM or both

Table 2 shows the latency ESP instructions incur. These
measurements are taken on the StrongARM processor and
factor out the cost of transferring data to/from the core, so
they are representative of what we expect to see if they were
executed at the µengine level.

The table also shows the instruction latency when ESS
is implemented in different levels of the memory hierarchy.
As we expected, the SRAM implementation performed the
best. The SDRAM implementation did not perform as well
since SDRAM data is transferred in 64-bit blocks (32-bit for



SRAM) at half of the SRAM frequency. In many cases, the
ESS access is to data smaller than 64 bits. To fully utilize
the speed of the SRAM, as well as the size of the SDRAM,
we placed part of the ESS on the SRAM (the hash table)
and the other part on the SDRAM (the tag table). Because
access to the tag table usually involves larger than 32-bit
reads, SDRAM seems to be more suitable for the tag table.
Although the performance is not as good as the SRAM-only
implementation, it trades off the benefit of a larger ESS for
slightly slower access times.

Throughput (Kpps)
Functions SRAM SDRAM SRAM & SDRAM

compare 232 146 188
count 340 259 263

Table 3: Estimated Throughput of ESP instructions

We also measured certain costs of processing on the µengine,
namely the ESP packet classification and the hardware hash
operations performed on tags. We used the cycle-accurate
hardware emulator provided by the IXP1200. The µengine
processing times averaged 75 cycles per packet (about 0.32
microseconds). Based on this number and the latency in-
formation from Table 2, the estimated packet rates for vari-
ous ESP instructions in terms of number of minimum-sized
packets per second processed are shown in Table 3.

We are currently pushing the code completely into the
µengines in order to avoid the performance penalty of trans-
ferring data to the core for processing. Our prototype imple-
mentation did not take advantage of some µengine features
that would almost certainly increase the effective through-
put, including multiprocessing, hardware multithreading, and
optimized memory access. Nevertheless, our preliminary
measurements show that ESP processing can support band-
widths of up to 169 Mbps, even going through the Stron-
gARM core.

7. RELATED WORK
A number of research efforts have aimed to place some

form of extended function or programmability in the net-
work. Compared to ESP, these generally either target more
specific end-to-end services, or provide “heavyweight” com-
putational capabilities offering greater computational power.

The PGM [5] and BCFS [30] protocols extend router func-
tionality specifically to support end-to-end reliable multi-
cast. Generic Router Assist (GRA) [2] is a set of capabilities
intended to generalize these protocols to support other ser-
vices. These protocols use soft-state techniques to maintain
and process state information for multicast sessions. This
state information can be used for, among other things, sub-
casting and NACK suppression. In its current state, GRA
is more narrowly focused than ESP, and does not share its
scalability characteristics.

Protocol boosters [4] was an early effort to place support
for end-to-end services in the network. Unlike ESP, pro-
tocol boosters could operate on all parts of the packet, and
could generate packets in the middle of the network. Among
the example applications was on-the-fly addition of payload
redundancy for forward error correction.

Active networks offer an alternative model of network pro-
grammability. For example, ANTS [29] provides users with

more or less complete control of packet processing, by as-
sociating a program to each packet, or capsule. ANTS also
allows packets to deposit and retrieve information in an as-
sociative store for a limited time; however, the time bound
is not fixed as in ESP, but depends on other factors such as
distance traveled by the packet. Overall, the design goals
of ANTS are oriented more toward flexibility than those of
ESP.

SNAP [13] allows packets to carry small programs ex-
pressed in a restrictive programming language that ensures
that the computing resources consumed by a packet are
strictly bounded. SNAP’s focus is more on computing re-
sources than storage, however. It does not explicitly provide
for packets to exchange information in the network.

Some active network services target specific needs, espe-
cially for group applications. The concast service [3] pro-
vides a many-to-one communication channel in which in-
formation sent to a common destination from the group is
combined in routers along the way, according to a merge
specification supplied by the receiver. Compared to the sim-
ple packet elimination capabilities possible with ESP, con-
cast can perform more complicated (heavyweight) packet
manipulation, possibly generating completely new and dif-
ferent sized payloads.

The “Smart Packets”project from BBN [21] applies active
network technology to the problem of network management;
it also focused on a small set of primitives to be invoked
by packets. However, the designers of the Smart Packets
mechanism explicitly ruled out having packets leave state at
a node; thus while computations may involve multiple nodes
they cannot involve multiple packets.

8. CONCLUSIONS
We have proposed a new approach to placing support for

end-to-end services inside routers. Ephemeral state process-
ing is a building-block service designed under minimal as-
sumptions about applications. A key aspect of our design is
the use of an associative store with a fixed lifetime. This con-
straint benefits the network by ensuring that state resources
are freed at the same rate they are allocated; this makes it
possible to build stores that can process allocation requests
at “wire speed”. It benefits the user (service designer) by
ensuring that all trace of a computation disappears from the
network within a fixed time.

We have designed ESP to be implemented on, or near, the
fast path of a modern router, and to have scalability and
robustness characteristics similar to those of the Internet
Protocol. Our experience with an initial prototype imple-
mentation on the IXP1200 network processor suggests that
ESP should easily be able to process packets at line speeds
in excess of hundreds of megabits per second. By exploiting
available parallelism, pipelining, and special-purpose hard-
ware, we expect performance can be increased substantially
beyond that.

Our current design is based on a small set of parameter-
ized instructions that suffice for a broad set of end-to-end
services that are primarily of an auxiliary nature. However,
we expect that as new ways to use ESP are found, the need
for new instructions will arise. This brings up the question
of how to add new instructions once ESP is deployed. One
possibility would be to allow packets to carry “microcode”—
perhaps coded in a restricted language like SNAP [13]—
which would be interpreted at each node. However, it is not



at all clear that such flexibility is necessary. An alterna-
tive would be to extend the instruction set through a formal
standardization process. This would allow the flexibility and
simplicity of the instruction set to be carefully maintained.
In either case, allowing the instruction set to be extended
provides for the ESP service to evolve over time.

In addition to various engineering choices that should be
evaluated through experience—the particular value of τ , the
size of stored values, and so forth—we find some further is-
sues worthy of future study. One is dynamic adaptation
of robust ESP computations to network conditions, so that
they use network resources (bandwidth and storage) as ef-
ficiently as possible. Another is the development of a secu-
rity architecture for ESP that provides enhanced protection
while preserving the lightweight nature of the service.

Although we are optimistic that ESP is both sound in de-
sign and useful in application, it represents just one point
on a spectrum of approaches to extending network function-
ality. We hope others will both consider additional ways to
use ESP and also explore different parts of that spectrum.
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